

The effect of urban heat island and other mesoclimatic anomalies on C stocks and CO_2 emissions in Moscow megapolis

Viacheslav Vasenev, Andrey Dolgikh, Olga Romzaykina, Inna Brianskaia, Mikhail Varentsov, Pavel Konstantinov

Why soil carbon? Soil functions

Blum, 2005

- Protection of humans and environment
- Biomass production
- General reservoir
- Physical basis of human activities
- Source of raw materials
- Geogenic and cultural heritage

BBodSchG, 1998

- Water and nutrient cycling
- Ground water protection
- Basis for organisms' life
- Land for settlements
- Land for agriculture
- Deposition of raw materials

Andrews et al, 2004

- Nutrient cycling
- Water filtering and buffering
- Biodiversity and habitat
- Resistance and resilience
- Physical stability and support

30 to 50% of distinguished soil functions are directly or indirectly related to soil carbon balance

Why soil carbon? Ecosystem services (ES) ESs' categories (TEEB, 2010)

Provisioning	Regulating	Cultural
 Food Water Raw materials Genetic resources Medical resources Ornamental resources 	 Air quality regulation Climate regulation Moderation of extreme events Regulation of water flows Water treatment Erosion prevention Maintenance of soil fertility 	 Aesthetic information Opportunities for recreation and tourism Inspiration of culture, art and design Spiritual experience

Habitat

>Maintenance of life cycles of migratory species

➤Maintenance of genetic diversity

25 to 40% of distinguished ecosystem services are directly or indirectly related to soil carbon balance

Background

DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS

The Development of Approaches to Assess the Soil Organic Carbon Pools in Megapolises and Small Settlements

V. I. Vasenev, T. V. Prokof'eva, and O. A. Makarov

Faculty of Soil Science, Lomonosov Moscow State University, Vorob'evy gory, Moscow, 119991 Russia

E-mail: vasenyov@mail.ru Received: May 25, 2011

SOC stocks in 0-150 cm of urban soils in Moscow

SOC stocks in 0-150 cm of urban soils Serebryanye Prudy village From 70 to 800 t ha⁻¹

From 900 to 1100 t ha⁻¹

Background

Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

How to map soil organic carbon stocks in highly urbanized regions?

V.I. Vasenev ^{a,b,c,d,*}, J.J. Stoorvogel ^a, I.I. Vasenev ^c, R. Valentini ^c

^a Soil Geography and Landscape Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands

^b Environmental System Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands

^c Laboratory of Agroecological Monitoring, Ecosystem Modeling and Prediction, Russian State Agricultural University, 127550, Timiryazevskaya, 49, Moscow, Russia

^d Landscape Architecture and Design Group, Agrarian Faculty, Peoples' Friendship University of Russia, 117198, Miklukho-Maklaya str., 6, Moscow, Russia

SOC stocks in 0-150 cm of urban From 200 to 300 t ha⁻¹ soils in Moscow region

Background

Urban Ecosyst DOI 10.1007/s11252-016-0594-5

Changes of soil organic carbon stocks and CO₂ emissions at the early stages of urban turf grasses' development

A. S. Shchepeleva¹ • V. I. Vasenev^{1,2} • I. M. Mazirov² • I. I. Vasenev² • I. S. Prokhorov² • D. D. Gosse³

Research questions and tasks

- ✓Mapping and assessment of SOC stocks in Moscow megapolis
- ✓ Quantifying relationships between microbial (basal respiration), soil properties and meteorological parameters (lab experiment)
- ✓Analyze dynamics in soil respiration, soil temperature and moisture in situ
- ✓ Climate monitoring and modeling

emains

Y

Complete

Soil survey and SOC interpolation in Moscow

Sampling campaign

Soil sealing (OSM-based)

Soil respiration in situ measurements

✓ Seasonal dynamics driven by soil
 temperature and moisture
 ✓ Considerable difference in CO₂ emissions
 between different surfaces (trees, shrubs, lawns) at the local scale

Lab experiment

Relationships between BR, soil temperature and moisture

BR = 13.1 + 0.54 T - 0.26pH + 0.4 SOC + 0.01 W

 $R_{adj}^2 = 0.52$

Mesoclimatic modelling

 $\Delta x = 1$ km, 180x180 grid cells, dt = 10 sec

Δx = 500 m, 400x400 grid cells, dt = 5 sec

Preliminary outcomes and next steps

✓SOC stocks in topsoils (20 cm) of Moscow megapolis were over 8000 and SOCD ranged from 0 to 24 g/m²

✓ In situ respiration of urban soils ranged from 100 to 500 mg C- CO_2 m² h⁻¹ and was more sensitive to land cover than to the level of anthropogenic load or functional zoning

✓ Basal respiration was significantly correlated to soil temperature, SOC and pH and was not influenced by soil moisture linearly.

✓ Different approaches to model Moscow climate agree on a clear pattern with higher temperatures in the central area due to urban heat island

✓ Mesoclimatic maps will be linked to SOC map via the obtained regression equations to project dynamic changes in potential CO_2 emission from urban soils